
NASA CONTRACTOR 

REPORT 
NASA 
(7,; 

CM! 

HEAT AND MASS TRANSFER AT A 
GENERAL THREE-DIMENSIONAL 
STAGNATION POINT 

by Pad A, Libby 

Prepared by 

UNIVERSITY OF CALIFORNIA, SAN DIEGO 

La Jolla, Calif. 

f Or 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION l WASHINGTON, D. C. l JULY 1967 
i 4 

/ P 
u L 

https://ntrs.nasa.gov/search.jsp?R=19670020804 2018-07-21T18:22:51+00:00Z



TECH LIBRARY KAFB, NM 

NASA CR-817 

HEAT AND MASS TRANSFER 

AT A GENERAL THREE-DIMENSIONAL STAGNATION POINT 

By Paul A. Libby 

Distribution of this report is provided in the interest of 
information exchange. Responsibility for the contents 
resides in the author or organization that prepared it. 

Prepared under Grant No. NGR-05-009-025 by 
UNIVERSITY OF CALIFORNIA, SAN DIEGO 

La Jolla, Calif. 

for 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

For sole by the Clearinghouse for Federal Scientific and Technical Information 
Springfield, Virginio 22151 - CFSTI price $3.00 



HEAT AND MASS TRANSFER 

AT A GENERAL THREE-DIMENSIONAL STAGNATION POINT 

Paul A. Libby* 

University of California, San Diego 
La Jolla, California 

The characteristics of the boundary layer at a stagnation point 

with arbitrary velocity gradients in two orthogonal directions are determined. 

The principal parameters which characterize these layers are the ratio of 

velocity gradients, c = ‘(dve/dy)O/(due/dx)O; the wall-to-stagnation temper- 

ature ratio, gw, * and the mass transfer rate related to fw. Solutions are 

obtained for a range of these parameters of interest, in particular for 

- 1 5 c -Z 1; the problem of th e two-point boundary conditions is overcome 

by quasilinearization and exploitation of the asymptotic solutions applicable 

as 77403. The results of applied interest relate to the heat transfer; the 

effect of mass transfer on the heat transfer for arbitrary c is referred to 

the heat transfer with c = 1, i. e., to the axisymmetric case,. The heat trans- 

fer is shown to have a minimum for c k -0. 5. Of fundamental interest are 

the complex, cross-flow velocity profiles, i. e., cp’ profiles, which exhibit 

both reverse flow and velocity overshoot, and the existence of boundary layers 

with inner layer solutions of constant shear and zero-heat transfer for the 

saddle-point stagnation point case of c = -1. 

This study was carried out as part of a research program being 
performed under NASA Grant NGR-05-009-025. The author is pleased to ac- 
knowledge the assistance of Karl K. Chen in checking the analysis, the capable 
programming of the numerical analysis of Judith Hays of the UCSD Computer 
Center, and the helpful comments of Eli Reshotko concerning this problem. 

* 
Professor of Aerospace Engineering, Department of the 

Aerospace and Mechanical Engineering Sciences. Member AIAA. 
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Nomenclature 

integration constants 

velocity gradient in the x-direction, (due/dx) x, y=o 

velocity gradient in the y-direction, (dve/dy) x, y=o 

ratio of mass density and viscosity coefficient, Pk/pepe 

ratio of velocity gradients, b/a 

velocity function, cf. Eq. (15) 

modified stream function, cf. Eq. (6) 

shear function, cf. Eq. (15) 

static enthalpy ratio, h/h, 

shear function, cf. Eq. (15) 

static enthalpy per unit mass 

heat transfer rate at the surface 

heat flux function, cf. Eq. (15) 

velocity components in the x, y, z directions, 

respectively 

constants in asymptotic representation of the stream 

functions , cf. Eq. (17) 

integral thickness, cf. Eq. (30) 

integral thicknesses 

displacement thickness, cf. Eq. (30) 

similarity variable, cf. Eq. (6) 

transformed similarity variable, cf. Eq. (18) 

momentum thickness es 

factors in arguments of the exponential function 

viscosity coefficient 

2 
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P 
u 

<p 
Subscripts 

e 

W 

1 

velocity function, cf. Eq. (15) 

mass density 

Prandtl number 

modified stream function, cf. Eq. (6) 

conditions in the external inviscid flow 

conditions at the surface, z-q=0 

conditions for the asymptotic solution as q 4 a3, 

cf. Eqs. (17) and (29). 

I. Introduction 

The simultaneous effects of heat and mass transfer at stagna- 

tion points, both two-dimensional and axisymmetric, have been studied ex- 

tensively in the past. 1-9 These studies have been motivated from a theo- 

retical point of view by the fundamental nature of the boundary layer flow 

at such points, by the exact applicability there of similarity solutions and 

by their relevance to the leading edge and nose regions of bodies in high- 

speed flight. 

These two cases of two-dimensional and axisymmetric flow are 

recognized as special cases of more general stagnation point flows as shown 

in Figs. la and lb. In the former figure the stagnation point as might exist 

on an ellipsoid of revolution crosswise to the undisturbed flow is shown; this 

is the type of three-dimensional stagnation point treated by Howarth 
10 

for in- 

compressible flow and by Reshotko 
11 

for the compressible, “cold-wall” case 

and termed a “nodal point of attachment. ” In this type the u and v velocity 



components are everywhere directed away from the stagnation point. Figure lb 

shows another type of stagnation point which is termed “a saddle-point of at- 

tachment” after Davey” and which is perhaps of less applied interest. Never - 

theless this second type is of theoretical interest and indeed can arise in ap- 

plications, e. g. , at various points on a serrated cowling of either a supersonic 

or a hypersonic inlet; this type involves outflow from the origin along one co- 

ordinate and at least partial inflow along the orthogonal coordinate; its exist- 

ence was apparently pointed out by Howarth but the first correct solutions for 

the equations of incompressible flow along with a lucid description of the physi- 

cal features of these stagnation points were presented by Davey. Recently 

Poots l 3 carried out calculations for the compressible case without mass 

transfer and with a Prandtl number of unity. 

The various cases of these general three-dimensional stagna- 

tion points are identified by a parameter denoted here (following Howarth, 10 

Davey 
12 and Poets’ 3, as “c” which is defined as 

c 5 (dve/dy)/(due/dx)lx y=. = b/a . 
8 

Clearly, the two-dimensional and axisymmetric cases correspond to c = 0, 

1, respectively. For nodal points of attachment 0 < c g 1, where the x- 

coordinate is without loss in generality oriented in the direction of maximum 

positive velocity gradient. It is perhaps instructive to consider the stream- 

lines in the external flow in these various cases; with u = ax and v = by, 
e e 

then the streamlines in the external flow denoted as y, e = y,(x) are easily 
f 

found to be given by y, e - xL. Again the reduction to the usual cases of 
, 

c = 0, 1 is clear; there is exposed by these considerations the interesting 



additional cases 0 < c < 1, -1 <cc 0. The streamlines for typical examples. 

thereof are shown in Fig. 1. It must be expected in general that the stream- 

lines within the boundary layer will be quite different from those in the ex- 

ternal flow. 

Davey 
12 has shown that for saddle points in incompressible 

flows -1 s c C 0 where the lower limit arises from the physical require- 

ment that as z -) co, w < 0; the same considerations apply in the compress- 

ible case. Davey has also demonstrated the interesting result, again for 

incompressible flows, that for c < -0.4294 part of the boundary layer in- 

volves reverse flow; i. e., for z > z 
C’ 

the v-velocity component is directed 

inward as is v e, but for 0 < z < z 
C’ 

v is directed away from the stagna- 

tion point. Poots13 has not examined the effect of heat transfer czn the criti- 

cal value of c but has shown for c = -0. 5, for heated and adiabatic surfaces, 

that reverse flow does occur. 
$6 

In this paper the simultaneous effects of heat and mass trans- 

fer on the properties of these general stagnation point flows over the full 

range of the parameter c are examined. As might be expected ior such an 

initial study only homogeneous injection is considered and the transport 

properties of the gas are assumed to be described with sufficient accuracy 

by the frequently employed approximations pp Ir p,c(, and constant but non- 

unity Prandtl number. 

Poots13 * mdicates that for the cases of c < 0, the two-point 

nature of the boundary conditions results in “considerable difficulties. ” He 

The physical explanation for flow reversal resides in the “adverse” 
pressure gradient experienced by the flow along the y-axis for c < 0. 



employed what might be termed the straightforward, iterative scheme in- 

volving assumption of the requisite wall values (there are three in these 

problems) at z = 0, integration in the direction of increasing z, and suc- 

cessive correction of the eigenvalues so that the conditions at z + co are 

satisfied. The.cited difficulties might be expected by analogy with previous 

experience for flows with incipient separation and nonunique solutions. Sine e 

either additional or at least the same difficulties could be expected in the 

present study due to the effect of injection, particular attention was devoted 

to methods for overcoming them. The decision was made to employ the 

quasilinearization technique of Bellman 
14 

and Kalaba; 
15 

this has been ap- 

plied to boundary layer problems by Radbill 
16 

and later by Libby and Chen 17 

to cases with nonunique solutions. As will be found below this decision turned 

out to be a proper one. 

The appropriate equations for the present study have been given 

previously . However, to introduce the notation used here, their development 

and appropriate boundary conditions are outlined first; the treatment of the 

two-point boundary conditions is given next; finally the results of the numeri- 

cal analysis and their significance are presented and discussed. 

II. Analysis 

In the neighborhood of a stagnation point such as those shown 

in Fig. 1 the boundary layer equations in Cartesian coordinates with axes 

aligned with the planes of symmetry are (cf. Refs. 10-13): 

P ( 
u?z+vau+w?2 

ay a? ) =P,x(g+&(&) 

%J 

(1) 

6 



( e+V P Ua~ *+W F3V 

ay ) aZ =P,Y(%y+$(&) 

& (PU) + g (PV! + g @w> = 0 

P ( ug+vah+w 
ay 

$=&(E g) . 

(2) 

This system of equations is completed by an equation of state. 

The boundary conditions of interest in the present context are: 

At z=O 

u=v=o, w=w w ’ 
h=h 

W 

At z-00, 

u=u e = (due/dx)x = ax, v = ve = (dve/dy)y = by, p = p,, h = he 

where w h w) w9 a, b, p e 
and he are given parameters of the problem. 

Equations in Similarity Form 

Consider now a similarity solution of the form 

P = P(V) 

u = ax f’(q) 

v = by q’(r)) 

h = he g(v) 

where the similarity variable 77 p (pea/p,) 1’2 Joz (p/pe) dz’ = q(z). Thus 

(3) 

(4) 

(5) 

(6) 

7 



a7jla2.i = a7jlay = 0, aqlaz = (pe a/pe) 1’2 (p/p,); moreov ;r, the continuity 

equation [Eq. (3)] upon substitution of Eqs. (6) and integration leads to 

w = - (p,lp)(p, a/pe)"2 If + c <p) + constant (7) 

where c I (b/a) is, as mentioned above, a crucial parameter. The constant 

in Eq. (7) arises from the integration. Now it will be found that in the final 

differential equations the finite forms of the dependent variables f and (D 

will appear only in the combination (f + c cp); thus with no loss in generality 

the constant in Eq. (7) can be set equal to zero and the values of f and cp 

at q = 0 can be selected conveniently as 

f(0) = f = 
W - (pw), (pelrea)‘1’2 ; q(O) = 0 . (8) 

Thus fw becomes the parameter providing the measure of the rate of mass 

transfer. 

Substitution of Eqs. (6) and (7) into Eqs. (l), (2) and (4) leads 

to the following equations in similarity form; 

(C f”)’ + (f + c cp) f” + [(p,lp) - f’2] = 0 

(C (0”)’ t (f t c cp) @’ + c L(p,‘p) - (pf2] = 0 

(9) 

(10) 

[(C/a) g’]’ + (f + c cp) g’ = 0 (11) 

where ( )’ q d/dq and where C I (ppIp,p,) is the usual ratio of mass density 

8 



and viscosity coefficient. For present purposes, i. e., for studying the ef- 

fects of heat and mass transfer at general three-dimensional stagnation 

points, it is considered satisfactory to take C - 1 and CJ constant and ho 

assume the approximate equation of state p - h 
-1 ; thus the final equations 

are 

f”’ t (f + c 9) f” + (g - f12) = 0 

rp”’ t (f t c fJ) f$’ t c (g - (p12) = 0 

g” t cr (f + c cp) g’ = 0 

which are now subject to the bdundary conditions: At 77 

f=f 
W) 

(p=(p’=f’=O, g=g 

-,’ w * 

(12) 

(13) 

_; 
(14) 

0, 

At ~+co, f’ = cp’ = g = 1. Examination of the boundary conditioiis indicates 

that the surface values fW”, (pw” and gw’ represent the eigenvalues in 

the numerical solution of Eqs.. (12) to (14). Consider special cases: If c = 0. 

Eqs. (12) and (14) reduce directly to those for a two-dimensional stagnatic,-: 

point as required; Eq. (13) . is inessential since cp is uninteresting in this 

case. If c = 1, it is necessary to let f = (2 l/2 T t fw)‘2 and Q = 5 2 -l/2 

to recover the usual equations for the axisymmetric stagnation point in terms 

of r and g with 7 as the dependent variable; in this case cp E f - fw so 

again Eq. (13) is inessential. Finally, if g 3 1 these equations correspond 

to incompressible flow and have been treated by Howarth 
10 

and Davey. 12 

Note briefly that the four parameters identifying a solution are now: c, CT, 

f 
W’ 

and gw. 

9 



For convenience in numerical analysis, not only in integration 

but in application of the quasilinearization method, convert Eqs. (11) to (14) 

to first-order equations; introduce the new dependent variables 

GE f”, 5 = f’, H = (P”, F = cp’, R = g’ 

so that 

G’ = - (f t c <p) G 

5’ =G 

f’ = 5 

H’ = - (f t c <p) H 

F’ =H 

cp’ = F 

c (g - F2) 

(15) 

(16) 

R’ = - (J (f t c q) R 

g’ = R 

subject to the boundary conditions: At 7 = 0, 

[=F=cp=O; fzf; g=g 
W W 

and at 7 + co 

e=F=g=l. 

In this system the eigenvalues become G(O), H(0) and R(0). 

The Asymptotic Solutions. and Uniqueness, c > - 1 

It is essential for the proper treatment of the two-point bound- 

ary conditions, at least for the case of c < 0, to obtain the asymptotic behavior 

10 



as r) -+ co of f, g, and cp. Davey 
12 has shown for c < 0 and for incom- 

pressible flow that it is not sufficient to require the conditions at q -) co 

given above but that it is necessary to require further <p’ to approach unity 

exponentially as r) + co. Analogous auxiliary requirements are known to be 

needed to assure uniqueness in a variety of boundary layer problems; from 

the point of view of numerical analysis their neglect can lead to difficulties of 

convergence in treating the two-point boundary conditions. It is to be ex- 

pected that a similar requirement must be asserted in the compressible 

:; 
case. 

Fortunately, the requisite asymptotic solutions can be readily 

developed from a combination of the solutions for incompressible flow pro- 

vided by Davey 
12 

and for compressible flows at conventional stagnation points 

provided, e.g., in Ref. 18. 

After the usual procedure for developing asymptotic solutions, 

consider the special behavior of Eqs. (12) to (14) in the neighborhood of a 

solution as 77 4 oo; accordingly, let 

f = (q - o!) + f#?) 

cp = (r) - B) + cp,(?-/) (17) 

where f 1’ ‘pl’ g1 
are perturbation functions and where 01 and @ are con- 

s tants , whose values are inessential for present considerations. Now it will 

::: 
It is perhaps suggested that the difficulties implied by Poots 

13 
for 

c < 0 were related to improper treatment of the “infinity!’ conditions since 
he does not comment on the asymptotic behavior. 

11 



be convenient to follow Davey 
12 and to treat separately the cases of c > -1, 

c = - 1; thus introduce the independent variable 

rll = Cq(l + cl - (OL + c /3)-J (1 t .)-l/2 

where it is assumed that c > -1. Thus Eqs. (12) to (14) yield 

d3fl 

---T+ % 
dnl 

61 dgl 
-=o . 

d% 
2 + urll dql 

There is only one solution to Eq., (21) permitting gl 

ql + co; it is 

g1 = - Cl 6 ewuq’2’2 dq’ 

(18) 

(19) 

(20) 

(21) 

0 as 

(22) 

where C, is an arbitrary constant; for (u/2) 1’2 ql >> 1 the integral may I 

be approximated so as to obtain the convenient form, 

q=- - (C1lUql) e 
-uq12’.2 

I1 - (u-l ql-2) + . . . ] . (23) 

I.2 



With this solution for gl Eqs. (19) and (20) may be solved 

for dfl/dql and dqlldgl. Davey12 has supplied the necessary comple- 

mentary solutions 
* 

and the particular solutions are readily obtained by as- 

suming solutions proportional to n m exp [ -0rj .I 12’23 where m is deter- 

mined by substitution into the appropriate equation, i. e. , either Eq. (19) 

or Eq. (20); thus for u f 1 

dfl -[2(1 t c)-l + l] ,“l 2/2 
- = ApI, 
d% 

~l-(3tc)(2tc)(ltc)-2~l-2+...l 

+ Blnl 
2(1 +cP [1 + (1 _ c)(l t c)-2 ry2 t . . . ] 

t (c,‘u2q,3)(u - q-l (1 +c) 
-3’2 -‘% 2’2 

e [[l +L7u(1 +c) 

t(u-1)2u(ltc)-(1t3c)]u-1 (a-l)-l(ltc)-l ?j1-2t . ..]I (24) 

There is a typographical error of a missing negative sign in the pre- 

exponential factors in Eqs. (4. 5) and (4.6) of Ref. 12. 

be found by letting dfl /drill = exp (-t)12 

These solutions may 

‘4) Z(r),); there results a homogeneous 

Weber equation 

d2Z’d?j12 + L(Y + 1’2) - (?712’4)] z = 0 . 

The asymptotic approximations thereto lead to the complementary solutions 

in Eqs. (24) and (25). 

13 



dQ1 
- = A2rll 

-[2c(l 

d? 

tcp t l] e-%2’2 
~1 - (1 t3c)(l t2c)(l tcj201-2 + . . . ] 

+ B2Vl 
2c(l -d [l _ c (1 _ 

CM1 + cl rll 

-2 -2 + 
-. l 1 

t (Clc/u2n13)(u- 1)-l (1 tc) 
-3’2 -UT+ 2’2 

e 1 t \7u (1 + c) 

t c(0 - 1)2 . o(ltc)-(3tc)]u-1(u-l)-1rll-2 +... * 
> (25) 

Equation (25) indicates the nonunique behavior of dql /dql - dpl /dq as 

% 
-Q+co provided -1 < c< 0. On the contrary the solutions for gl and 

dfl ‘dnl are unique for all values of c of interest. 

Use of the quasilinearization procedure for the treatment of 

the two-point boundary conditions along the lines suggested in Ref. 17 pro- 

vides a convenient means for assuring that Bl and B2 are zero and that 

the second constant set a priori equal to zero in the development of Eq. (22) 

is indeed zero. This may be seen as follows: Assume that there is chosen 

an appropriate value of n >> 1, which is denoted as q*, and which is con- 

sidered to be the matching point between numerical solutions and the asymp- 

totic solutions of Eqs. (23) to (25). * Now if Eq. (23) is differentiated with 

respect to nl, the constant Cl eliminated, and the variable ql replaced 

by its approximate value (f t c cp)(l t c)-~‘~, there results a relation which 

involves R, g, f and cp and which prevails at all values of q 2 Q* on a 

:K 
Explicit inequalities for the determination of q* will be given below. 

14 



proper asymptotic solution for g(n), i. e., one with the second arbitrary 

constant in Eq. (22) equal to zero. If this relation is imposed at r) = @, 

there is obtained 

RC = _ u (f* + c cp:>)(g::: - 1) [l + (1 + c) a -l (f" + c (p:q-2 t . . . ] (26) 

where ( )* denotes a quantity evaluated at q = r)*. Thus a numerical solu- 

tion for g(q), 0 5 q 2 r)*, which satisfies Eq. (26) will have the correct 

asymptotic behavior and may be continued smoothly to infinity by the selec- 

tion of the single constant Cl in Eq. (23). Selection of n* can be made 

such that the second term in the [ ] quantity on the right-hand side of 

Eq. (26) is negligible compared to unity. 

Similar arrangements are made for the treatment of the two 

momentum equations; in particular Eq. (24) with B1 = 0 is differentiated 

with respect to 771, Al and Cl eliminated, the variable r)l replaced by 

(f + c cp)(l + &I2 and the resultant relation applied at q = q*. Thus there 

is obtained 

G::: = - (f:: f c cp’:‘)([C - 1) 11 t (3 t c)(@ t c (p*)-2 t . . . ] 

- (f::: $ c cp*p u-l (g* _ 1) {l + 0 \(f* t c (p*)-2] t . . . 1 . (27) 

Note that the second and higher terms in the { 1 quantities in Eq. (27) are 

inessential because with (f* t c q) >> 1 the second term is 

small compared to the first and may be computed with less accuracy. Sim- 

ilarly, from Eq. (25) there is obtained 

15 



H* = - (f* t c @)(F* - 1) [l t (3c t l)(f* t c @)-2 + . . . ] 

- c(f* t c @) 
-1 -1 

0 (g* - 1) Cl t 0 [(f* + c @+)-2] + . . .I . (28) 

Note that additional criteria for the selection of q* derive from the right- 

hand sides of Eqs. (27) and (28).” 

The Problem of c = -1 

For completeness it is perhaps worthwhile to consider the 

special, limiting case of c = - 1. Here the equations for fl’, <pl’, gl 

are obtained by substituting Eqs. (17) into Eqs. (12) and (14) and by linear- 

izing; there results for c = -1, 

fl 
“’ t (fi - a) fl” - 2 fl’ = - g1 

Ql 
“’ t (j3 - rr) qy + 2 ‘p,’ = 81 (29) 

Note that for this special case as q + 03 the normal velocity component w 

becomes a negative constant, namely - (B - a), where it must be assumed 

on physical grounds that @ - 01 > 0. This behavior is in contrast to the other 

cases c > -1 where w - -7 as ?j 4 co as is customary in stagnation point 

solutions. 

Equations (29) are identical to those of Davey 12 
for this case 

provided gl E 0. Davey showed numerically that (@ - a) r 2 fl “to 5 dec- 

imals ‘I; with this value assumed to be exact, he concluded by invoking the 

* 
Note that Eqs. (27) and (28) apply for u = 1 as well as for u # 1; 

the higher order terms in the series multiplying (ggC - 1) are different for 
the two cases. 

16 



principle of “fastest approach” that again for this case uniqueness of the 

solutions for cp can only be assured if the arbitrary constant correspond- 

ing to B2 in Eq. (25) is set equal to zero. This conclusion appears some- 

what arbitrary since the solution multiplying B2 is proportional to 

q exp t-2 
1’2 n) which has an acceptable, i. e. , exponential, decay rather 

than the “forbidden” power law decay. 

There appears to be no reason to assume a priori that 

fi - 01 = 2 h/z but rather only that @ - CY > 0. Then solutions involving expo- 

nential decay to the last and first of Eqs. (29) can be found; thus for these, 

statements analogous to Eqs. (26) and (27) can be derived. However, for 

the second equation the characteristic equation yields complex or real values 

depending on the value of @ - o! compared to 2 fl ; for the cases of 

/3-o~2fl th ere arise uniqueness questions which apparently have only 

somewhat arbitrary answers. Accordingly for the case of c = -1 an im- 

precise specification of infinity conditions is made with the expectation that 

the resulting solutions are closely representative of the flow corresponding 

to that value of c; what is specified is that [* = F* = g* = 1. 
$ 

Wall Solutions for Large Rates of Injection 

In Refs. 9 and 19 it is shown that for large rates of injection 

at an axisymmetric stagnation point the boundary layer may be considered 

to consist of two parts; an inner layer of essentially constant shear, tem- 

perature and composition and an outer layer in which the flow properties 

adjust to their requisite, external values. The cases of large rates of in- 

jection are of interest in several applications wherein the rates of mass 

This “imprecise” treatment is what is usually done in boundary 
layer calculations. 

17 



and convective heat transfer are effectively uncoupled; e. g., this is the 

case when intense radiative heat transfer occurs. However, in Ref. 20 

Zeiberg has recently considered the usual similarity equations with the 

pressure gradient parameter fl and has shown that only for the axisym- 

metric case p = l/2 does an inner layer solution exist. The following 

question therefore arises: Do inner layer solutions exist for c f 1 ? To 

answer this question let 

G==G W 

5-G,rl 

f - fw t Gw rj2’2 

H-Hw 

F==Hwr) 

Q- Hw rj2’2 

R-0 

Then substitution into Eqs. (16) leads to 

G W = g,‘(-f,) = c Hw 

(30) 

H W = c gw’(-f,) = Gw’c 

which are self-consistent if c = f 1; thus in addition to the axisymmetric 

18 



case the saddle-point solution with c = - 1 leads to an inner solution but 

for no other value of c do such solutions exist; this is a new result. 
* 

Quantities of Technical Interest 

The result from the analysis of boundary layers at stagnation 

points of most technical interest is the heat transfer. Of particular concern 

in the present study is the variation of the heat transfer from its common 

two-dimensional or axisymmetric value for the same surface and mass trans- 

fer conditions. To expose this variation in a useful way there is considered 

the ratio (q,/q,, 1) with U, fw and gw fixed as a function of the param- 

eter c, where q, 1 is the heat transfer to the axisymmetric stagnation 
9 

point (c = 1) and q W is the heat transfer for generic c. 

With the assumptions employed here relative to the transport 

properties of the gas it is found that 

9, R(Ox, u, fw, gw’ -= 
qw, 1 R(O;l, u, fw, g W’ 

where the parameters influencing this ratio of heat transfers are emphasized. 

Other quantities of technical interest from stagnation point solu- 

tions are measures of the boundary layer thicknesses which may be specified 

in terms of “edge” values of r); more convenient are integral specifications. 

Momentum thickness es in both the x and y directions may be defined as 

ex = Jo @ulp,u,) I1 - (due) 3 de 

ey f Jorn @v/p eve’ Ll - (v’ve,] dz . 

The author is indebted to S. L. Zeiberg for a useful exchange concern- 
ing this result. 

19 



These lead to the convenient forms 

(p, alpe)“L Ox = Ax = J f’ (1 
0 

(Pe de) l/2 fJx =Ay= sco(p’ (1 
0 

f’) dq 

(31) 

- Q” dq . 

The displacement thickness in this three-dimensional case must be defined 

after Moore 
21 

and Lighthill 
22 

extended to include mass transfer as 

-(pw), + 2 [peue6”i - (p,v, - pv) dz] = 0 

which leads to the convenient form 

(P, a/Cc,) 1’2&: = s” [g - (f’ t cQ’)(l + c)-l] dq - cfw’(l + c)] 
0 

= AC - [f,‘(l + c)] . (32) 

It is perhaps worth noting that there has been some recent dis- 

cussion (cf. Refs. 23 and 24) of the proper definition of displacement thick- 

ness for boundary layers with mass transfer. Here the view is taken that 

the suitable definition depends on the use to which the quantity is to be put 

and that following Moore and Lighthill the distance the wall must be displaced 

to alter an entirely inviscid flow the same amount as the boundary layer does 

is one definition; indeed 6:: given here is just this distance. 
* 

::: 
To be precise the distribution of the z-velocity component in the in- 

viscid flow is -we = a (1 t c)(z - 6*) according to the definition of 6* em- 
ployed here. 
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The Numerical Analysis 

The quasilinear version of Eqs. (16) involves iteration indices 

k and (k t 1) on each dependent variable and is* (cf. Refs. 14-17) 

(k+l)G, = _ (Wtf + cQj &+l)G + 2 (k+ (k+l+ _ (k)G (k+Uf 

_ c (kJG (WQ _ (k+l’g + tk)(f + cQ) tk'G _ Ik'e2 

(k+ljH, = _ (ldH UNf _ (Nlf + cQ) (k+l)H + zc (k)F tktl)F 

_ c (k’H (k+UQ _ c WUg + tk’(f + cQ) tk)H _ c (k’F2 
(33) 

(k+l)R, = _ u (WR (k+Uf _ uc (k’R (k+l)Q _ u (Wtf + cQ) (k+l’R 

t 0 (k)(f t CQ) (k)R 

(Wg, = &+l’R . 

* 
The idea of quasilinearization is readily understood as follows: Con- 

sider the system of first-order equations 

dyi’dx = gi (Yl, . . . YNS X), i=l... N . 

The quasilinear version thereof is 

(k+‘)(dyi’dx) = (k)gi t ; (k)(agi/ayj) ((k+l’yj - (k’Yj), i=l, . . . N. 
j=l 
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Note that if all dependent variables in two successive iterations are identical, 

1. e., if (k+QG I WG, (k+U5 q (k+, etc., then Eqs. (33) are identical with 

the original set of Eqs. (16). The point of view relative, to Eqs. (33) is that 

the functions labeled with the index. k are assumed known and those with 

the index (k + 1) are to be determined. Finally, note that the last two terms 

on, the right-hand sides of the first, fourth, and seventh equations are essen- 

tially inhomogeneous terms so that both complementary and particular solu- 

tions must be found numerically. 

The numerical treatment can be carried out in a straightforward 

manner. Assume that there is given a set of parameters; c, Q, fw, and 

gW’ and initial approximations for the functions G, H and R which are 

denoted, respectively, as (O)G (O)H and to) , R and which may be either 

rough guesses or may be obtained from an available solution for a “neigh- 

boring” set of parameters. Assume further that from Eqs. (26) to (28) a 

value of rj* has been estimated. Typically, the form of Eqs. (26) to (28) 

employed in iteration is shown by Eq. (27), namely 

(k+l)G;, = _ ( tk)f:: + c (k)p:)( (k+l)[* _ 1) [l + (3 +c)( (k)f% t c (k)@-)-2 t . . . ] 

_ (k) ( f* t c (k) @)-l (-1 (b+Ug* - 1) . 

Note that this form is not strictly the one which would follow from formal 

application of the quasilinearization idea but is a simpler one based on the 

idea that the only large quantity in these boundary conditions is (*f t c@) 

and that only small percentage changes in it are likely between iterations. 
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It is now possible to proceed with the method of solution: 

Three complementary solutions denoted by 

(l)G tl+ (llf (1) (1) (1) 
1’ 1s ls... gls G2, t2s Wf (1) 2n... g2s (l)G (l) 

3 
, . . . 

g3 

and a particular solution denoted by (l)G (1) 
P’ 

(l)[ 
pp ‘. * gp are found; 

these may conveniently be subject to the following conditions at r) = 0: 

(l)Gl(0) = (l)H,(O) = (l)R3(0) = 1, (‘)fp(O) = fw, (‘)g,(O) = gw with all 

other initial conditions equal to zero. These solutions are combined so 

that typically 

(l)G(q) = (l)AI (l)G+q) t (l)A2 (l)G2(~) t (l)A3 (l)G3(q) t (l)Gp(q) 

(l){(q) = (l)Al (?$+q) t (l)A2 (‘)(2(q) t (l)A3 (‘)5,(q) t (‘)[p(q) 

and similarly for the other six dependent variables. The constants (1)A.f 
1 

i = 1, 2, 3 are determined from Eqs. (26) to (28), each in linear form. 

Thus the combined solution satisfies all boundary conditions. Note that 

the initial conditions for each solution have been chosen such that (‘)G(O) = 

(l)A 
1’ 

(l)H(O) = (l)A2, and (l)R(O) = (l)A3. 

Another cycle of iteration can be carried out by replacing the 

initial gue s s e s (‘)G to+ 
, , etc., by (l)G tl)[ 

t , . . . . etc., and the cycles 

continued until some suitable convergence criterion is satisfied. In addition, 

the suitability of v can be checked after each or after several cycles. 

After convergence the integrals A 
X’ 

Ay and A* of interest in applications 

may be computed. 
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III. Numerical Results 

In this section the solutions to the final equations discussed 

above are presented. Perhaps some remarks concerning the numerical 

analysis are in order. The solutions to the quasilinear equations were ob- 

tained by a Kutta-Runge integration procedure with a fixed step-size of 0.05. 

The value of q* was taken to be in the range 8 5 TJ:~ 5 16 but determined 

by the condition (f+ t c@)2 2 102. The first iterate (k = 0) for each solu- 

tion was taken to be a previously obtained solution of a neighboring problem 

in the sense of corresponding to “adjacent” values of c, fw and/or gw. 

Convergence was considered to have been achieved when f ‘I, and 
W 

cp 
W 

‘I, 

gw’ 
in two successive iterates agreed within 10 -4 . Experience indicated 

that convergence was obtained in from two to ten cycles depending on the 

value of c and on the first iterate (k = 0); generally convergence was 

slower for c < 0. The calculations were carried out on the CDC 3600 and 

took less than 30 seconds per solution. For cases of c = -1 wherein prim- 

ative conditions at “infinity” were imposed @ was taken to be 16. 
* 

Solutions were obtained for three values of gw, namely 0, 1 

and 2, for a range of -fw from 0 to 2, and for the range of 1 s c S 1. Sev- 

eral calculations for large rates of injection were made for gw = 0. 1. The 

integral thicknesses were computed by Simpson’s rule after convergence 

was achieved. Note that the case of gw = 1 corresponds to incompressible 

flow so that in Eqs. (12) and (13) and in the definition of A* [cf. Eq. (32)], 

g a 1; nevertheless the energy equation has been solved for g(q) to obtain 

the “incompressible” heat transfer by making minor modifications in the 

computer program. 

The difference in the wall values, integral thicknesses, etc., between 
@ = 8 or 16 was found generally to be in the third or fourth significant figure. 
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It is remarked here that the experience obtained with quasi- 

linearization for the present problem indicates that it is indeed a powerful 

technique for handling the problem of the two-point boundary condition in 

complex boundary layers. 

The Wall Values and the Integral Thicknesses --=- -. 

The results of the numerical solutions can be presented in sev- 

eral ways. In the interests of brevity Table I lists the critical wall values 

f A 
W 

‘I, cp 
W 

‘I, gw’/(l - g,), the integral thicknesses 
X’ 

Ay and A* and 

the parameters ty and /3, a = $. (r) - f), p = ,liz (Q - q). From this 

tabulation a variety of studies can be made and indeed with the wall values 

given it is a simple matter to obtain by direct integration of Eqs. (16) the 

various profiles, i. e. , f’, cp’, and g. 

The values of f ” and of 
W 

cp ” 
W 

may be compared for the in- 

compressible case of gw = 1 and of zero mass transfer with the values 

given by Howarth 
10 12 

and Davey . Excellent agreement will be noted with 

Howarth but there are some relatively minor discrepancies with Davey for 

c < 0, probably due to different methods of numerical analysis. There is 

a discrepancy with Davey relative to the value of /3 - 01 for c = -1, f = 0, 
W 

gW 
= 1; with the imprecise specification of the boundary condition at q* = 16 

used here and with the present numerical analysis it is found that fi - 01 = 

2. 6983 and not “2 fl to 5 decimals. ” It is noted that this discrepancy is 

not altered by increasing Q* from 8 to 16. Note further that the present 

results for fw = 0, gw # 1 differ somewhat from those of Poots 13 because 

u = 0.7 here versus u = 1 in his work. 
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The Heat Transfer 

Of applied interest from the present study is the influence of 

mass transfer on the heat transfer for various degrees of three-dimensionality, 

i. e., for various values of c. In Figs. 2 to 4 the ratio (q,/q,, 1) is pre- 

sented versus c for various values of -fw and for gw = 0, 1, 2, respec- 

tively . Comparison of these figures indicates that mass transfer reduces 

the heat transfer with c < 1 relative to that at an axisymmetric stagnation 

point (c = 1) with the same mass transfer to a much greater extent if the 

surface is cold, i. e., if g a 0. 
W 

Moreover, each figure indicates that for 

c a -0. 5 the heat transfer either with or without mass transfer is a mini- 

mum, i. e., the heat transfer at a stagnation point with inflow along one 

plane of symmetry and outflow along the second such that c a -0.5 is less 

than at a two -dimensional, c = 0, stagnation point. This appears not to 

have been observed before. 

Since Figs. 2 to 4 relate the heat transfer to its correspond- 

ing axisymmetric value it is convenient for completeness to present for 

c = 1 the quotient gw’ /(l - gw)-1 versus -f as in Fig. 5. These values 
W 

are not new (cf. Ref. 3, e.g. ). 

In connection with Fig. 3 it is of interest to note that the large 

changes in boundary layer behavior associated with small changes in c 

from unity pointed out for incompressible flow by Howarth are not reflected 

in the heat transfer which decreases in a rather smooth fashion in the range 

-0.5scx 1. 

The Profiles 

In the interests of brevity only the more unusual aspects of the 

profiles associated with the solutions obtained here will be discussed. In 
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general the x-wise velocity profiles f’(v) and the enthalpy profiles g(q) 

are as might be expected and are therefore not presented. On the contrary 

the y-wise velocity profiles exhibit considerable complexity with reverse 

flow and velocity overshoot occurring in one profile. In Figs. 6 to 9 the 

cp’ profiles for -fw = 0, 1 and for g 
W 

= 0, 2 are shown; particular at- 

tention is called to the profi1e.s for c = -0. 75 which clearly exhibit reverse 

flow and overshoot. This behavior is due to the competition among inertia, 

pressure and shear stress effects through the thickness of the boundary 

layer, and incidentally leads to great difficulty in the handling of the two- 

point boundary conditions by forward-integration techniques. 

The other aspect of the profiles of interest concerns the cases 

of large injection rates wherein inner layer solutions appear; since those 

for c = 1 have been demonstrated elsewhere (cf. Refs. 9, 19) attention 

has been confined here to c = -1; shown in Figs. lOand 11 are the profiles 

for f’, Q’ and g for -fw = 3, and for gw = 0. 1 and 2. Shown are the 

inner layer solutions for comparison purposes. Clearly these profiles are 

interesting. 
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Table I Numerical Result6 

Ax 9 
- 

, --- 
A* ci B 

gw =o 

1 0 0.7821 0.7821 0.6058 0. 3056 0. 3056 -0.1483 2.7842 2.7842 
0. 25 0.6154 0.6154 0.4830 0.3477 0.3477 -0. 1776 1. 1476 0. a976 
0.50 0.4614 0.4614 0. 3677 0.3839 0.3839 -0.1903 1.5432 1.0432 
0. 75 0.3225 0.3225 0.2616 0.4260 0.4260 -0.2054 1.9873 1.2373 
1.00 0.2014 0.2014 0. 1669 0.4751 0.4751 -0.2239 2.5115 1.5115 
1. 25 0.1021 0.1021 0.0867 0.5333 0.5333 -0.2479 3.1908 1.9408 
1.50 0.0301 0.0301 0.0263 0.6040 0.6040 -0.2818 4.2914 2.7914 

0.5 0 0.6989 0.6555 0. 5257 0. 3364 0.3391 -0.1581 0.8922 0.9184 
0.25 0.5329 0.4904 0.4037 0.4055 0.4084 -0.2108 1.2910 1.0771 
0.50 0. 3811 0.3414 0.2907 0.4556 0.4574 -0.2294 1.7401 1.2901 
0. 75 0.2464 0.2122 0.1890 0.5157 0.5143 -0.2524 2.2717 I. 5913 
1.00 0. 1327 0.1074 0.1019 0.5894 0.5803 -0.2822 2.9595 2.0575 
1. 25 0.0458 0. 0332 0.0348 0.6829 0.6561 -0. 3244 4.0460 2.9363 

0 0 
0. 25 
0.50 
0.75 
1.00 
1. 25 

0.6071 0.4970 0.4362 0. 3680 0. 3723 -0.1891 1.0560 1.1578 
0.4435 0.3354 0.3173 0.4984 0.5107 -0.3033 1.5145 1.4166 
0.2966 0.1984 0.2102 0. 5725 0.5784 -0.3485 2.0567 1.7842 
0.1704 0.0931 0.1185 0.6642 0.6477 -0.4080 2. 7496 2.3389 
0.0705 0.0263 0.0471 0.7802 0.7068 -0.4899 3.7824 3.2845 
0. 0067 0.0008 0.0040 0.9208 0.7197 -0. 5896 6. 3947 5.8725 

-0.5 0 
0. 25 
0.50 
0.75 
1.00 
1. 25 

0.4940 0. 3592 0. 3246 0. 3920 0.3703 -0. 3146 1. 3876 1.2243 
0.3481 0.1857 0.2248 0.6863 0. 3562 -0.4379 1. 9269 1.6266 
0. 2254 0.0660 0.1431 0.7761 0. 3142 -0.6691 2. 5460 2.1611 
0. 1263 0.0036 0.0788 0.8475 0.2064 -0. 9664 3.3993 3.8955 
0.0509 -0. 0116 0.0309 0. 9670 0.0508 -1. 3206 4. 3920 4.0097 
0.0041 -0.0018 0.0023 1.0886 -0.1159 -1.7284 7.1798 6.9873 

-0.75 0 
0. 25 
0.50 
0.75 
1.00 
1.25 

0.5597 0. 0292 0.3854 0.5214 0.4498 -3.5718 1.2055 2.2771 
0.4224 -0.0513 0.2929 0. 5657 0.3531 -4.4335 1. 6289 2.7301 
0.2982 -0.0841 0.2082 0.6161 0.2232 -5. 3160 2. 1060 3.2426 
0.1893 -0.0810 0.1331 0.6744 0. 0684 -6. 2119 2. 6723 3.8470 
0.0987 -0. 0552 0. 0697 0.7431 -0. 1024 -7.1187 3.4097 4.6237 
0.0313 -0.0211 0.0220 0.8268 -0.2780 -8.0377 4.5989 5.8543 

-1 0 
0. 25 
0.50 
0.75 
1.00 
1. 25 

0. 6631 -0.2890 0. 4863 0.4057 0.2185 co 0.9691 3.6489 
0.5139 -0.2716 0.3812 0.4417 0.0703 03 1.3550 4.0299 
0.3774 -0.2323 0.2836 0.4828 -0.0903 co 1.7796 4.4481 
0.2556 -0.1784 0.1951 0. 5298 -0.2599 03 2.2639 4. 9242 
0.1514 -0.1176 0.1175 0. 5842 -0.4352 m 2.8511 5.4994 
0.0684 -0.0583 0.0541 0. 6484 -0.6145 co 3. 6536 6.2816 

g”, q 1 

1 0 1.3119 1.3119 0. 6654 
0. 5529 
0.4492 

0. 247’1 
0. 2659 
0.2858 

0.2417 
0.2659 
0.2858 
0.3075 
0.3310 
0. 3564 

0. 5689 
0.6196 
0.6765 
0.7400 
0.8105 
0.8883 

0. 3024 0.6430 
0. 3292 0.7083 
0. 3586 0.7826 
0.3907 0.8667 
0.4254 0.9610 
0.4625 1.0658 

0. 2923 0.4042 
0.3170 0.4443 

0.4841 
0. 5209 
0.5513 
0.5730 

0.6479 
0.7107 
0.7810 
0. a590 
0.9450 
1.0388 

-0.7567 
-0. 7221 
-0. 7526 
-0.8400 
-0.9734 
-1.1413 

1.2776 
1.1021 
0.9084 
0.6978 
0.4756 
0.2489 

0. 5689 
0.8696 
1. 1765 

0. 5689 
0. 25 1. 1674 1. 1674 
0. 50 1.0340 1.0340 

0.6196 
0.6765 

0.75 0. 9125 0. 9125 0.3555 0.3075 
1. 00 0. 8036 0.8036 0.2728 0.3310 
1. 25 0.7074 0.7074 0.2021 0. 3564 

0.5 0 
0. 25 
0.50 
0. 75 
1.00 
1. 25 

1.2669 
1. 1250 
0.9950 
0.8777 
0.7733 
0.6821 

0.9981 0.5797 
0.8522 0.4682 
0. 7206 0. 3671 
0. 6047 0.2777 
0. 5052 0.2014 
0.4224 0.1390 

0.2695 
0.2913 
0.3153 
0. 3416 
0.3704 
0.4017 

0 0 1. 2326 
0. 25 1.0948 
0.50 0.9692 
0. 75 0. a564 
1.00 0. 7566 
1.25 0.6694 

0.5705 
0.4216 
0. 2950 
0.1931 
0. lib8 
0.0644 

0.4959 
0.3884 
0.2933 
0.2121 
0. 1456 
0.0943 

0.3441 
0.3737 
0.4058 
0.4403 

-0.5 0 1. 2107 
0. 25 1.0826 
0.50 0. 9648 
0.75 0. a575 
1.00 0. 7608 
1.25 0.6750 

0.3377 
0.0920 

-0.0848 
-0.1991 
-0.2618 
-0. La60 

0.3913 0.3175 
0.3098 0.3383 
0. 2396 0. 3603 
0.1799 0. 3838 
0. 1302 0.4091 
0. c900 0.4365 

1.4900 0.7400 
1.8105 
2.1383 

0.6089 
0.9166 

0.8105 
0.8883 

0.7112 
0.7919 
0.8850 
0.9918 
1. 1132 
1.2495 

1.2315 
1.5541 
1.8849 
2.2239 

0.6479 
0.9607 
1.2810 
1. 6090 

1.0262 
1.1931 
1.3940 
1.6320 
1.9076 
2.2180 

1.9450 
2.2888 

0.6857 0.0938 
0.9916 0.3811 
1. 3027 
1.6198 
1.9440 
2.2755 

0.6970 
1.0419 
1.4123 
1. a022 
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c -f w 

gw 
= 1 (cont’d) 

-0.75 

-1 

gw 
=2 

1 

0.5 

0 

-0.5 

-0.75 

-1 

0 1.2380 -0. 3368 0.4719 0.2957 0.0910 -2.7459 0.6497 1.7815 
0.25 1.1071 -0.4376 0.3858 0.3143 -0.1480 -3.5275 0.9515 2.1112 
0.50 0.9859 -0.4929 0. 3078 0.3344 -0. 1538 -4.3168 1.2593 2.4513 
0.75 0. a751 -0. 5122 0.2385 0.3563 -0.3198 -5.0940 1.5735 2. a006 
1.00 0.7752 -0.5052 0.1785 0.3801 -0. SOba -5.8966 1.8947 3.1585 
1.25 0.6863 -0.4804 0.1283 0.4059 -0.7090 -6.6aoO 2.2232 3.5243 

0 1.2717 -0.7971 0.5627 0.2729 0.0356 03 0.6112 3.3095 
0. 25 1. 1364 -0.7997 0.4668 0.2905 -0. 1278 ID 0.9109 3.6061 
0.50 1.0110 -0.7800 0.3788 0.3095 -0.3059 co 1.2161 3.9084 
0.75 0. a962 -0.7437 0.2996 0. 3302 -0.4961 al 1.5276 4.2164 
1.00 0.7927 -0.6962 0.2300 0. 3525 -0.6959 03 1.8456 4.5307 
1.25 0.7005 -0.6425 0.1705 0. 3764 -0.9028 m 2.1704 4. a517 

0 1.7774 1.7774 0.7095 0.1771 0.1771 1.2461 0.4169 0.4169 
0. 25 1.6408 1.6408 0.6016 0. 1832 0. 1832 1.3414 0.6889 0.4389 
0.50 1.5122 1.5122 0.5020 0.1888 0.1888 1.4457 0.9618 0.4618 
0.75 1.3917 1.3917 0.4116 0.1940 0.1940 1.5597 1.2354 0.4854 
1.00 1.2793 1.2793 0.3307 0. 1985 0. 1985 1.6836 1.5099 0.5099 
1. 25 1.1749 1.1749 0.2599 0. 2024 0. 2024 I. 8177 1.7851 0.5351 

0 1. 7646 1.2956 0.6192 0.1680 0. 2439 1.4141 0.4103 0.5681 
0.25 1.6304 1. 1568 0. 5123 0. 1697 0.2590 1.5377 0.6778 0.6139 
0. 50 1.5039 1.0293 0.4150 0. 1697 0.2747 1. 6748 0.9449 0. 6638 
0.75 1. 3850 0.9132 0. 3282 0. 1678 0.2909 1.8262 1.2115 0.7189 
1.00 1.2737 0.8089 0. 2526 0. 1636 0.3075 1. 9924 1.4775 0. 7761 
1. 25 1. 1699 0.7162 0.1886 0.1571 0. 3244 2.1737 1.5931 0.6886 

0 1.7676 0.6209 0.5370 0. 1398 0.3774 1.4879 0.4816 0.9511 
0. 25 1.6352 0.4762 0.4336 0. 1320 0.4095 1. 6213 0.6393 1.0838 
0.50 1. 5097 0.3515 0.3413 0. 1204 0.4409 1.7690 0.8950 1.2372 
0.75 1.3910 0. 2480 0. 2610 0. 1046 0.4698 1.9319 1. 1485 1.4119 
1.00 1.2791 0. 1662 0. 1932 0.0844 0.4946 2.1103 1.4000 1.6078 
1.25 1. 1742 0.1051 0. 1378 0.0598 0.5138 2.3045 1.6501 1.8227 

0 1.7788 -0. 3736 0. 5263 0. 1189 0. 3721 -0.0956 0. 3587 1.9706 
0. 25 1.6450 -0.4818 0.4335 0.1131 0.2949 -0.2659 0.6185 2.2684 
0. 50 1.5178 -0. 5158 0.3503 0.1059 0. 1841 -0.4416 0.8787 2. 5820 
0. 75 1.3973 -0. 5879 0.2768 0.0972 0.0420 -0.6172 1.3191 2.9069 
1.00 1. 2840 -0. 5962 0.2132 0.0869 -0. 1272 -0.7881 1.4000 3. 2395 
1.25 1. 1780 -0.5833 0.1594 0.0750 -0. 3180 -0.9509 1. 6615 3.5771 

0 1. 7918 -0. 6470 0. 5248 0. 0924 -0.2102 -1.8690 0. 3302 1.4649 
0. 25 1. 6561 -0. 7607 0.4405 0.0914 -0. 3205 -2. 6074 0.5937 1.7587 
0. 50 1. 5270 -0. 8266 0. 3634 0. 0872 -0.4652 -3.3455 0.8580 2.0562 
0.75 1.4051 -0. a542 0.2939 0.0835 -0. 6387 -4.0794 1. 1232 2. 3566 
1.00 1.2905 -0. a522 0.2324 0.0789 -0.8357 -4.8059 1. 3894 2.6591 
1.25 1. 1836 -0. 8283 0.1791 0.0733 -1.0513 -5. 5230 1.6566 2.9632 

0 1.7849 -1.2352 0.6147 0.1467 -0. 1281 CD 0. 3847 3.1049 
0. 25 1.6500 -1.2449 0. 5217 0.1491 -0.3033 co 0.6525 3.3701 
0. 50 1.5221 -1.2304 0.4359 0.1511 -0.4946 a3 0.9213 3.6358 
0.75 1.4014 -1. 1966 0. 3580 0. 1527 -0.6996 co 1.1910 3.9028 
1.00 1.2881 -1.1485 0.2883 0.1537 -0. 9160 OD 1.4619 4.1717 
1. 25 1.1826 -1.0903 0.2271 0. 1542 -1.1419 co 1.7338 4.4416 
2.00 0.9127 -0. a910 0.0953 0.1545 -1.8577 co 2.5602 5. 3588 
3.00 0.6583 -0.6567 0.0019 0. 1482 -2. 8564 m 3. 6837 6.4828 

Table 1 Numerical Results (Cont’d) 

VW ” gw’l(l-g,) Ax 

gw = 0.1 

-1 2. 00 0. 0520 -0. 0518 0. 0024 0.8526 -1.2531 al 5.8821 8.4332 
3.00 0.0333 -0.0333 0.0000 0.8092 -3.1397 co 8. 6979 10.7070 

--- 
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a) NODAL POINT b) SADDLE POINT 
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Figure l.- Schematic representation of coordinates, velocity components, and streamlines in 

the external stream. 
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Figure 2.- The influence of the ratio of velocity gradient in heat transfer 
with mass transfer: cold wall case, gw = 0. 
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Figure 3.- The influence of the ratio of velocity gradient in heat transfer 
with mass transfer: incompressible case, $J = 1. 
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Figure 4.- The influence of the ratio of velocity gradient in heat transfer 
with mass transfer: heated wall case, $J = 2. 
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Figure 5.- Heat transfer parameter at an axisymmetric stagnation point, c = 1. 
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Figure 6.- The velocity profiles in the y-direction: cold wall, fw = 0, 
$J = 0. 
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Figure 7.- The velocity profiles in the y-direction: cold wall, -f, = 1, 
gw = 0. 
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Figure 8.- The velocity profiles in the y-direction: heated wall, fw = 0, 
gw = 2. 
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Figure 9.- The velocity profiles in the y-direction: heated wall, -f, = 1, 
Qti = 2. 
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Figure lO.- The profiles for the saddle-point c = -1 with a large rate 
of injection: cold wall. 
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Figure ll.- The profiles for the saddle-point c = -1 with a large rate of injection: 
heated wall. 
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